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ON STABILITY OF STEADY MOTIONS OF A DYNAMICALLY SI’METRIC SOLID BODY
AT A TRIANGULAR POINT OF LIBRATION

V.N. RUZANOQVA

The motion of a dynamically symmetric solid body is considered relatively to its
center of mass, placed at the triangular libration point I, of the circular restrict-
ed problem of three bodies. It is assumed that the motion of the basic bodies M;and
M, of ultimate mass m; and m,, and that of the solid body center of mass 0 is de-
fined by the equations of the plane circular restricted problem of three bodies.
The dimensions of the solid body are assumed small in comparison with the distance
of its center of mass to M; and M,, which enables us to neglect the effect of mo-
tion of the solid body about its center of mass on the motion of that center itself.

Sufficient conditions of stability of a gyrostat satellite were obtained in /1/ on the
assumption that the satellite center of mass is located at the points of libration. The steady
motions of the body whose center of mass is located during the wheole time of motion at one of
the libration points in the gravitational field of two point mass were obtained in /2/. In /3/
the problem of their stability was investigated in the first approximation, and the sufficient
conditions of stability of certain of these motions were obtained in /4/. The investigation
of stability of the relative eguilibrium of an axisymmetric solid body whose center of mass
moves along the periodic orbit of the c¢ircular restricted problem of three bodies was carried
out in /5/.

To investigate the solid body motion relative to its center of mass we
systems of coordinates: the orbital 0XyzZ
tor Myl

introduce two
(the axis 0Z is a continuation of the radius-vec-
the axis 0Y is normal to the plane of triangle M,M,L, and is directed so that

viewed from its end the rotation of points M,
plements the axes QY and 0z to a right-hand
axes are directed along the principal central
directed along its axis of dynamic symmetry).
system relative to the orbital one is defined

From the expression for the body kinetic

and M, is counterclockwise, the 0X axis com-
trihedral), and the attached system Ozy: {whose
axes of inertia of the body, with the ¢: axis
The orientation of the attached coordinate
by Euler's angles . 8, ¢.

energy, for the projections P ¢ r of absolute

angular velocity of the body on axes Oz, Oy,0:z,and for the force function /6/ it follows that
¢ is a cyclic coordinate, hence the projection of the absolute angular velocity on the O:
axis is constant r = r, = const.

We select the distance between points M; and M, as the unit of length. Then (n is the
angular velocity of bodies M, and M,, and { is the universal gravitational constant)

ky = (1 — p) n%, ko = pn?
(0 = mp/(my 4+ my), k= fmy)

Assuming in the Lagrange equations of motion of the body axis of symmetry relative to the
orbital system of coordinates to be V' =9 =8 =8 =0, ¢ =y, 6=20, (the prime denotes different-

iation with respect to t==nt ), we obtain for the determination of steady motions of the
body the following system of equations:
4sin 24, sin® 6, -+ Bap sin P, sin 6, — (1)

8 (@ — 1) p (3sin 24, sin® 8, + V3cos W, sin 26,) = 0

4cos®, sin 20, -+ 8up cos ¥, cos 8, — 3(g — 1) [4 (1 — p) sin 20,
p {sin 28, — 3sin® ¢, sin 26, — 2} 3sin Py cos 28)] = 0

o= Cl4,B=rin

Omitting the complete analysis of system (1) for arbitrary parameters

) a, B, p, we shall
consider the following of its particular solution:

6, = n/2, Yy =1n (B — is any) (2)
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Solution (2) and, also (3), were obtained in /2/ for pu=0.5

For solution (2) the axis of dynamic symmetry of the body is normal to the plane of tri-
angle M;M,L, and the body rotates about the axis with constant velocity ¢. For solution
(3) the axis of dynamic symmetry of the body lies in the plane of the triangle M;M,L, under
angle 8, to the radius-vector M,0. and the angular velocity of proper rotation ¢, as well
as r, are equal zero.

To investigate the stability of obtained solutions we use the equation of motion in the
Hamiltonian form.

Motion (2) corresponds to the solution of Hamiilton equations

B=:112+z,,pe=y,.\p=:t+z'g,p¢=yz

(4)
We expand the Hamiltonian function in series in the neighborhood of solutions (4}, set-
ting
8a=n/2+ 1, pg=y. $V=a+ 7y Pp= ¥
We obtain
H=Hy4H+ ... (5)
1 —
Hz=‘7‘({h’+!h’)+[ B il .2 +—(a-—1)(1—Tp)]xlz+
3V3
_T(a—1)l”1‘1+ [aTs'*'T(“— 1) P]‘f+(aﬁ— 1) 21y2 + 2240
r 1 3
=L_a'25’ 2% aﬂ—7(a—1)<1—Tp)1z,*+
1 i
T8 — 9@~ Nulated— [grab+ 5 @—Dp)ze-
Y3
5 le—1)pnzd — —-VZ? (& — 1) pxydz, 4 —12— T1Zxtya +
S 1 1 1
(T ap — T) o' — g N+ 5 avd
The characteristic equation of the linear system defined by the form H,, is of the form
M4 (@B — 1+ 32— 2] A7+ (af — 1) (@B +3a — &) + - (@ — 1Py (1~ ) =0 (6)

For stability it is necessary that all roots of this equation be pure imaginary. The suf-

ficient condition of stability is the condition of positive definiteness of the quadratic form
Hs /7/.
In Fig.l for p = 0.01215, which corresponds to the system Earth
p — Moon, in the parameter plane &, § (0<a<2, —oo<B<+ ) the mo-
’ tion in the shaded region is unstable, in region 1 it is stable,
and in region 2 only the necessary conditions of stability are

satisfied. 1In region 2 solution (2) is in the first approximat-
q / ion stable. In that region the form H, is not of fixed sign but

the characteristic equation (6) has only pure imaginary roots.

To solve the problem of stability in region 2 in the strictly
« nonlinear sense by means of real canonical transformation zi, y: —»
777 ¢i» p;, obtained in /8/, we reduce function H, to the normal form

/ DS} . .
/ H, =5 o1(@*+ Pr’) — 5~ @ (¢s" + o)
/\

X

2
and then (since Hy, =0) by the Birkhoff transformation ¢i. pi =g;*,

-

/ \ )
-4 Y pi* we reduce the Hamiltonian ¥ to the form
ZIax

\ H = oy — 0yy + con? + eurira + Cosra® + 7N
i arsV 7iry sin (@1 + 3@s) + bra Vrira cos (91 + 30
\l ¢,* = V2risin @i, pi®* = ¥V 2r; cos ¢;

-8

Fig.l

where the quantities

ceor C1 Coor  and a and b are calculated using the coefficients of form H,
in variables gq. p.
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If the system does not have fourth order resonance o, =3w; then the last
two terms in formula (7) are absent. In that case the Arnol'd — Mozer theoxem, the
equilibrium position of system with the Hamiltonian (5) is stable, if D{g, f} = mw+nmw%
e == 0. In Fig.l the curve Dia, =0 for u=0.01215 is shown by the dash line. The guestion
of its stability was not considered.

Along the resonance curve o, = 3w, (Shown by the dash-dot line in Fig.l) accoxding to
Markeev's theorem /8/, the equilibrium position is stable, if

3VIVE F 8 < eao + 36y + Icpn |

and unstable when the inequality sign is the opposite.

Computey calculations have shown that on the resonance curve in region 2 contains two
sections of instability: (u = 0.01215): —1.747 < P <~—1.573 and 0.386 < B <C0.448.

Let us now investigate the stability of the first of solutions (3). The analysis of the
second solution is analogous. The following solution of Hamilton equations:

n 1 3
%—':Tt ‘eomTanfg?‘v_____;T{v p‘,"’-"ev Pe‘—'i (8)

corresponds to the considered here motion.
We introduce new canonical variables =z, ¥ using formulas

8=6+a, pg=1+uy P=al2+z py=1
The expression for H, is

sz—ff[;‘%:—g;+n=+zmctgeo+w]w 9
S (@ 1) [2(t — 1) 005 28— €03 20, + VT sin 20g] 22—
%(a—ﬂp(ﬁsin’ﬁ,-}»ﬁsin 26;) =2
It can be shown that the inequality
el (10)

is a condition for the roots of characteristic equation of the linear system to be pure imag-
inary, as well as the condition of positive definiteness of the quadratic form (9), i.e. (10)
is the necessary and sufficient condition of stability of solution (8). Condition (10) means
that the body motion is stable, when its polar moment of inertia is smaller that its eguator-
ial moment, i.,e. the body is elongated along its axis of symmetry, a condition cbtained in /4/.
For the second solution of (3) the stability condition is &> 1.

We note in conclusion that the consideredhere problem is a natural extension of the well
studied problem of regular precession of a satellite in circular orbit. A bibliography of
that problem appeared in /6/. The results of the present investigation pass when p=0 to
the respective results of /9,10/.

The guthor thanks A.P. Markeev for stating the problem and interest in this work.
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